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SUMMARY 

The orientation tensor L is introduced to construct a modified Leslie-Encksen model for the viscous, 
incompressible flow of anisotropic suspensions (including electric field effects). This is then utilized to develop a 
weak variational formulation and finite element scheme for computing the flow and orientation fields. Numerical 
results are presented for exploratory test problems. 
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1. INTRODUCTION 

The non-Newtonian behaviour of fluid suspensions is a complex subject that is receiving increasing 
attention. For example, there are several open research questions in constitutive theory, mathematical 
modelling and numerical simulation that are of major interest.'-3 In particular, an improved 
understanding of the underlying processes and modelling techniques is critical to the analysis and 
development of engineering systems that involve the flow of suspensions. Applications include blood 
flow in biomedical engineering, fiac fluid suspensions for fracturing in oil and gas reservoir 
stimulation and flow of pastes and creams in the chemical engineering, pharmaceutical and food- 
processing industries. In certain cases such as ferrofluids and electrorheological fluids the orientation 
of the suspension particles and flow also depends on applied exterior fields. For example, in 
electrorheological fluids the microstructure of the fluid aligns with the applied field gradient, which 
implies that the fluid properties (apparent viscosity) change on application of an electric field and 
depend on the local field strength.435 

Experimental measurements have been made on a variety of fluid suspensions and these studies have 
led to the development of empirical formulas describing certain simple suspensions.6 These results are 
to some extent experimentally incomplete. For instance, the standard simple shear flow experiment is 
not adequate to describe the behaviour of such fluids in a non-simple shear situation. Some of our 
recent work has been directed to experimental studies of dilute fluid suspension flow using nuclear 
magnetic resonance (NMR) imaging.' 

Existing theoretical models are primarily designed for dilute to semidilute suspensions of 
monodispersed rigid spheres where particle-particle interactions are assumed small. Even in such 
cases where semiempirical theoretical models are available, mathematical modelling and numerical 
simulation for engineering applications remain formidable problems. The focus of the present 
investigation is the development of a mathematical formulation and finite element analysis based on a 
modified Leslie-Ericksen model for dilute anisotropic suspensions.8 
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The treatment proceeds as follows. In Section 2 we present the suspension fluid model investigated 
in the present work. This begins from the basic Leslie-Ericksen model which introduces an orientation 
vector field for the suspension. Then, using the approach of Doi, a tensor representation for orientation 
is introduced and this leads to a modified Leslie-Ericksen model. A variational form corresponding to 
this mathematical model is then constructed and an approximate formulation based on finite elements 
is developed in Section 3. Numerical experiments are presented in Section 4 for several basic 
benchmark flows and for a simple electrorheological flow model. 

2. ANISOTROPIC SUSPENSION MODEL 

2. I. Director field model 

The Leslie-Ericksen (L-E) model was originally developed to study the anisotropic behaviour of 
nematic liquid crystals.* In addition to the usual primitive velocity-pressure (u, p )  variables for viscous 
flows, the model introduces a new variable n called the ‘director’ to describe the orientation field for 
the anisotropic suspension. The director n at any point in the fluid is a unit vector oriented along the 
preferred direction (anisotropic or optical axis) of the fluid. In suspensions, n can represent the 
structure within a fluid due to either the microstructure of the suspended particles or the arrangement 
of particles relative to one another in the fluid.’39 Mathematically the L-E model involves including 
additional terms in the momentum conservation equations to describe the dependence of the elastic 
free energy W and stress on the director field n. 

More specifically, for conservation of linear momentum,8 

where p is density, u is velocity, F is body force and 7 is an extra stress tensor. D/Dt denotes the 
material time derivative and standard indicia1 notation is implied. The effect of the suspension director 
field n enters in the last two terms of (1) involving the elastic free energy W and extra stress tensor T 
respectively. An additional normalization condition 

n-n = 1 (2) 

enters as a constraint on the director n. 
The elastic free energy W can be expressed as 

W = i[K,(V-n)2 + K2(n.V x n)* + K,(n x V x n)’], (3) 

where K, are elastic constants. The extra stress tensor 7 has the form 

T = a, (n.D.n)nn + a2Nn + a,nN + a,D + a,(D-n)n + a,n(D.n), (4) 

where cli are termed Leslie viscosities and 

Dn 
Dt 

N = - - n - n ,  

with the vorticity tensor. 
Similarly, for conservation of angular momentum, 

D2nl aw 
a- 

Dt2 
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where CJ is an inertia constant (of rotation) and y is the director tension (From the normalization 
constraint on n). The additional vector fields G and g in (6) include the effect of an imposed electric 
field E and can be expressed as 

G = mE = c[m* + Aa(E-n)]E, (7) 

g = -ylN - y2(D.n), ( 8 )  

where G is the director body force and g characterizes the force arising from the difference in angular 
velocity between the director and the background fluid. Here m is the electric dipole moment 
associated with the field E, m* is the permanent dipole moment per unit volume, D is the rate-of- 
deformation tensor, N describes the rotation of the director with respect to the background fluid, c is 
the particle concentration and Aa = a,, - aL ,  with a,, and a I  the parallel and perpendicular polarities 
respectively. The coeficients y1 and y 2  are defined in terms of the Leslie viscosities (a i )  by 
y l  = a3 - a2 and y 2  = a2 + a3 = a6 - as, where y I  > 0 and y 2  .c 0 usually apply (Reference 10, p. 
23 1). 

The conservation-of-mass equation 

u .  1 .  I . = o  (9) 
completes the governing system of partial differential equations (l), (6) and (9) for u, p, n and y. 

Note that in the absence of an electric or magnetic field, n and -n are physically indistinguishable. 
This is not the case in the presence of an external field except when the particles have only induced 
dipoles (m* = 0). In the present work we consider the typical case where the particles have negligible 
permanent dipole and the induced dipole is proportional to the local field. 

On non-dimensionalizing the governing equations and considering the high-viscosity limit," an 
explicit relationship for N(n) can be developed from ( 5 )  and (6). The angular momentum equation (6) 
then reduces to 

G + yn - y , N  - y2(D-n) = 0. 

y = y2(n-D.n) - (G-n). 

(10) 

Taking the dot product of (10) with n, applying the normalization condition and simplifying gives 

(1 1) 

Substituting in (1 0) and using (7), we obtain 
* cAa cm 

71 Yl YI 
N = - 112 [(I - nn)-(D-n)] + -(E*n)[(I - nn)-El + -[(I - nn).El, 

where I is the identity (isotropic) tensor and I - nn is the identity tensor on the spherical surface where 
the direction n resides. 

Now, using this relationship for N(n) in (9, we can construct a reduced system with the evolution of 
the director field described by 

Dn 
- = n - n  + 1, [(I - nn)-(D.n)] + I,(E.n)[(I - nn).E] + A3[(I  - nn)-El, 
Df 

(13) 

where 
* cAa cm 

71 a 2 - a 3  Y I  Yl 
A] = --= - A2 =-, A3 =- 7 2  a2 + a 3 / a 2  

and for most suspensions a2 < 0, a3 < 0 with a3 % 0." 
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Substituting also for N in (4), the extra stress tensor becomes 

T = 2pD + [p2(n-D.n) + p4(E.n)]nn + 2p3[n(D.n) + (Dm)n] + p5En + p6nE, (14) 

where we have also regrouped terms and redefined the coefficients in a more standard form as 

P = $4, P2 = a1 - 4 ( a 2  + a3). 
2p3 = a5 + a211 = a6 + a 3 A l ?  p4 = l I m ,  

P5 = @-2[l2(E'n) + & I T  p6 = a3[A2(E.n) + 131.  

The formulation can be modified' to treat a Bingham fluid by including an elastic yield stress GI 

(15) 

A finite element scheme on a discretization of the flow domain was developed for the above 
formulation, but numerical difficulties and numerical instabilities were encountered both in 
normalizing n and, more particularly, because n and -n are physically indistinguishable in the 
absence of an applied external field. This latter difficulty necessitates the development of a modified 
formulation. Consequently, we now develop a tensor extension of the previous model using an 
approach based on that of Doi13 for nematic liquid crystals. 

(Reference 12, p. 308) so that the constitutive relation becomes 

T = 2pD + [GI + ,u2(n*D*n) + p4(E.n)]nn + 2p3[n(D*n) + (D-n)n] + p5En + ,u6nE. 

2.2. Tensor field model 

The basic approach is to reformulate the equations in terms of the symmetric tensor L = nn rather 
than explicitly in terms of the director vector n. Clearly nn and (-n)(-n) are indistinguishable and L 
has eigenvalues o1 = 1 and u2 = 0. The eigenvector corresponding to the major eigenvalue c1 = 1 is 
simply n. To derive the transport equation for the tensor L, first take the tensor product of the director 
equation (13) with n to obtain 

6). = n - n n  + l ,[D-nn - (n-D.n)nn] + R2[EE-nn - (E-n)2nn] + R3[En - (E-n)nn] (16) 

and similarly 

n - = n(R.n) + A,[n(D-n) - (n.D.n)nn] + l,[nn.EE - ( E ~ n ) ~ n n ]  + 13[nE - (E-n)nn]. (17) (E) 
Adding these equations and setting l3 = 0 for particles with negligible permanent dipoles, the 
evolution equation for the director tensor L is 

DL 
Dt 
- = n . L  - L.Q + AI[D.L + L.D - 2(D : L)L] + A,[EE.L + L*EE - 2(EE : L)L], (18) 

where D : L = D,, L,, and EE : L = E, E, L,,. As indicated previously, the actual director field n can 
be recovered as the nnci a1 eigenvector of L. It is sometimes convenient to combine the last two 
terms in (18) to A,[D -L + L-D* - 2(D*: L)L], where D* = D + (A2/A,)EE, so that the effect of the 
electric field can be interpreted through an additional stretching in the modified rate-of-strain tensor 

P P  

D*. 
The stress tensor in (1 5 )  can be expressed similarly in terms of L as (see Appendix I) 

7 = 2pD + [GI + : D)]L + 2p3(D*L + L*D) + A2yl[(L : EE)L - EE-L], (19) 

where we have again taken A3 = 0. 
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Remarks. It is straightforward to demonstrate that in the absence of an electric field and for the 
choice i~ = 1 the evolution equation (1 8) for L reduces to a form identical with Doi's molecular model 
for nematic liquid crystals at the high-viscosity limit. Note also that (18) can be interpreted as an 
evolution equation for each of the unknown components in the symmetric tensor L. 

3. NUMERICAL FORMULATION 

3. I .  Weak formulation 

A weak integral formulation of the problem can be obtained by projection with an appropriate class 
of test functions. For simplicity of exposition let us begin by considering the governing equation (1 8) 
for the orientation tensor L in the absence of any applied electric field (E = 0). Taking the integral 
projection with the test vector field w, we have: find L E T, where T is the space of admissible solution 
components for L, such that 

IR (g + u-VL).w dr = 1, (KbL - L-n) -w dr + 1, [D-L + L-D - 2(D : L)L].w dx (20) 

holds for all admissible test fields w. 
A similar integral formulation can be obtained for the equations governing the conservation of linear 

momentum and mass. For the class of (high-viscosity) fluids of interest the inertia terms are negligible 
and can be omitted. Similarly, the viscous terms dominate the elastic terms which can also be 
neglected. Then, after integrating by parts in the weighted residual statement using the Gauss 
divergence theorem, the resulting variational statement is: find the velocity-pressure pair 
(u,p) E V x P satisfying the essential boundary conditions and such that 

J, 

p I R  $ . v d x - /  R p V - v d x + /  R ~ : V v d x =  IR F-vdr (21) 

for all admissible test velocities v E V, where the stress tensor in (19) simplifies for the case E = 0, 
GI = 0 to 

T = 2pD + p2(L : D)L + 2p3(D.L + L-D). (22) 

Finally, the weak integral condition for mass conservation is 

qV-udx = 0 (23) 
J R  

for all admissible pressure fields q E P. Now (20H23) together with initial conditions comprise the 
weak integral statement of the problem. We recognize that (21) and (23) correspond to the weak 
statement for a viscous flow problem with the stress field defined by (22) and L satisfying (20). A 
semidiscrete Galerkin finite element scheme can now be developed based on this integral formulation. 

3.2. Finite element approximation 

First introduce a discretization of the domain as a partition of finite elements {a,) and then define 
the approximation subspaces Th C T ,  v h  C V and Ph c P, where h denotes the mesh parameter. In the 
present work we use C' piecewise polynomial bases of Lagrange type and consider quadrilateral 
elements with biquadratic velocity and bilinear pressure fields. This choice of elements is known to 
satisfy the LBB (or inf-sup) stability condition for the finite element approximation of incompressible 
Navier-Stokes  problem^.'^ A bilinear basis is also employed for the components (I,), of the tensor Lh. 
Since L is symmetric, only the entries /,,,j 2 i, need be considered. 
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Substituting Lh, U h , P h  for L, u,p  in ( 2 0 x 2 3 )  and similarly wh, vh, q h ,  for test functions w, u, q, the 
Galerkin finite element formulation is to find Lh, uh, P h  E Th x vh x Ph approximating the essential 
boundary conditions and initial conditions and such that 

hold for all admissible test functions wh, vh, qh and where we have written for convenience 

The semidiscrete expansions for Lh, uh, P h  have the form 

NL N" NP 
( u ~  )h = c ( u t ( f ) ) j x j ( x ) *  Ph = c ~ n ~ ( ~ ) * r n ( ~ ) ~  ( 2 8 )  

m = l  
( I l j ) h  = ( l l , ( f ) ) k @ k ( x ) v  

k = l  

where the nodal unknowns depend continuously on time t. Substituting the expansions ( 2 8 )  in (24)- 
(26)  and similarly setting Or, xs and \v, for the corresponding components of the test functions, we 
obtain a semidiscrete system of ordinary differential equations for the nodal unknowns i ( t ) ,  U ( t ) ,  p(t) 
of the form 

(30) 
dU 

M, dt + C,(U)U + Bp + A(L)U = 0 ,  

BTU = 0, (3 1) 

where i ( t )  denotes the global vector of components Zi,(t),j > i ,  at the nodes of the discretization, U ( t )  
denotes the usual global vector of velocity components and p ( t )  is the corresponding global vector of 
nodal pressures. 

3.3. Time integration and sparse solution 

The semidiscrete system (29H3 1) can be integrated using a variety of schemes. In the present work 
an implicit integration scheme is used, because the stiffness of the system may be quite large owing to 
the sensitivity of the orientation field to local changes in the velocity. Differencing (29) and (30) 
implicitly then leads to a large coupled non-linear system of algebraic equations to be solved at each 
time step. In fact, since the orientation field is strongly dependent on the local flow, but not vice versa, 
iterative decoupling of the system should provide a more efficient algorithm. Other integration 
schemes such as explicit methods and predictor-corrector strategies can also be constructed but are not 
considered here. 
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The non-linearity is represented by the dependence of the matrices C, , Q, 0, C, and A in (29) and 
(30) on the respective solution vectors. This can be conveniently treated by a successive approximation 
iteration or by Newton-Raphson iteration within each time step. The solution at the previous time step 
provides an appropriate starting iterate. In the successive approximation scheme for example, the 
resulting sparse system at iteration s + 1 of time step n + 1 reduces to 

K,(U:'')Gf: = H I + ' ,  (32) 

Note that in this formulation the subsystem for L decouples from the viscous flow equations. However, 
this scheme converges only linearly and the non-linear coupling is less strongly enforced within each 
iterative step. Newton's method leads to a fully coupled system, but convergence within a time-step 
may be better (Newton converges quadratically near a solution). 

Some comments on the element calculations for the system matrices are warranted. First, the 
element integrals are evaluated using Gaussian quadrature. This implies that material properties p, p2, 
p3 and field variables or derived quantities (such as a,) must be supplied or interpolated at the Gauss 
points. 

Let the non-linear system arising from implicit differencing of ( 2 9 x 3  1) be denoted F(z) = 0, where 
z is the full vector of nodal unknowns z1 = i, z2 = U, 2 3  = p. The familiar Newton iteration is then: 
given zo, for iterate s = 1, 2, . . . compute 

or, equivalently, solve 

J , ~ z  = -F(z,), 

where the Jacobian matrix J, = aF/& at z = z,. 

0 < 8 5 1, the Jacobian entries for Xi/&' are 
Let f , ,  f2. f3  denote the components of F associated with (29x31)  respectively. At t* = f,,, + Oat, 

= MI + [C,(U) + Q(U) - AlO(U)]BAf, afl 
a i  
- 

Similarly, for Xi/%, 
afl a 
au au 
af, a 

- = -([Cl(U) - Q(U) - i,O(U)]i)OAt, 

ar, = BT. au - au = M, + (z[C,(U)U] + A ( i )  

Finally, for af , /aZ, ,  

af3 _ -  
ap - O .  

ar, 5 = BAtB, 
a p = O  aP 

(37) 

(39) 

Thus the Jacobian matrix is a 3 x 3 block matrix with entries in block columns 1-3 given by (37)-(39) 
respectively. 

* d 
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The Jacobian matrix for the system is accumulated from element contributions (j, = a f e / & f }  for 
representative element e, where the element integrals for (je) are evaluated in the standard manner by 
Gaussian quadrature. This implies that in the element quadrature, solution values from the previous 
iterate are interpolated at the Gauss points. In particular, the approximate tensor components (/,j)h are 
interpolated at the Gauss points. 

3.4. Electric field efects 

In the preceding formulation we excluded electric field effects so that the main construction could be 
presented concisely. It is straightforward to generalize this treatment to include the effect of an electric 
field E which induces an electric dipole of moment rn per unit volume. To do so, we first rewrite the 
transport equation for L in (1 8) as 

= i2-L - L-42 + 1, [D*-L + L-D* - 2(D*: L)L], (40) Dt 
where 

I 
D* = D + ~ E E  

4 
is a modified rate-of-strain tensor. Hence inclusion of the electric field in the transport equation for L 
can be accomplished by simply introducing the modified rate-of-strain tensor D* for D. Similarly, the 
stress tensor T has the additional electric field contribution given in (19). 

Given a specified field E, the weak integral statement and Galerkin finite element formulation can 
be modified directly to incorporate the electric field contribution. More specifically, in the integral 
statement (24) for L we replace Dh by Df, the approximation to D* in (41). Similarly, the relation for 
stress in (19) including the contributions from E now applies. The time integration procedure and 
Newton solution scheme follow as before. 

In the numerical studies following, we consider the steady state case for an electrostatic field. Then 
E = Vcp, where the electrostatic potential cp satisfies the Poisson equation 

-ACP = q / ~ ,  (42) 

where q is the charge density and E is the permittivity. The corresponding weak statement for this 
potential problem is: find cp E H ’  satisfying the essential boundary conditions on cp and such that 

J, Vcp-vvdr = J ( q / E ) V d X  
R 

(43) 

holds for all v E H I ,  with v = 0 on that part of the boundary where cp is specified and where HI is the 
standard Hilbert space of admissible potentials. The finite element Galerkin statement follows similarly 
on replacing cp by (ph and v by vh in (43). This leads to a sparse symmetric positive system that is 
decoupled from the suspension flow equations and can be solved in advance to determine Vh and 
thereby E6 = Vcp,. This fixed field can then be used in (41) and (19) to include the electric field effect 
on particle orientation and the suspension flow. 

4. NUMERICAL STUDIES 

We consider several hndamental test cases for steady two-dimensional flow of a suspension both in the 
absence and presence of an external electric field. Since the flow is assumed two-dimensional, it 



ANISOTROPIC FLUID SUSPENSIONS 19 

follows that ’ 
n(D.n) + (D.n)n - D = (n-D-n)I, (44) 

which implies that the velocity and orientation fields depend only on the sum p + p 3 .  Hence varying p 
and p, such that p + p 3  remains constant will influence only the pressure field. Since the extra stress 7 
is in general not traceless, we therefore define the modified hydrodynamic pressure 

= f - rr(7)/3, (45) 

where ; is the modified pressure, > = p - pg-r + p o ,  with g the gravitational constant, r the position 
vector andp, a constant. Finally, the pair (p, p )  is chosen so that the Reynolds number is lop4 and the 
viscosity scale is chosen to be the isotropic viscosity 

Case I .  Flow between parallel plates 

Consider the steady flow of a suspension between two parallel plates. A fully developed flow is 
assumed at the inlet x = 0 and at the outlet x = 1.  A ‘no-slip’ boundary condition is enforced at the 
lower wall y = 0. The horizontal symmetry line y = 1 is a ‘slip line’. The pressure is determinable 
within an arbitrary constant and in the present calculations we specify this constant without loss of 
generality by setting the pressure to be zero at the centreline of the inlet (x = 0, y = 1). 

An analytical solution can be derived for this problem in the absence of an electric field.2 Therefore 
this provides an appropriate validation test. Assuming that the horizontal velocity component u is a 
function of y only, then the parabolic, fully developed profile satisfies the momentum and mass 
conservation equations. The equation for L is decoupled, and solving for the director angle p with 
n = (cos /?, sin b), we obtain (see Appendix 11) 

If A, -= 1, there is no steady state solution and the director n will ‘tumble’. If A, 1 1, it can be shown 
that only the positive solution remains stable. 

In the numerical experiment the orientation b of the directors at the inlet is specified by (46). The 
initial orientation of the directors elsewhere in the flow is chosen to coincide with the principal axis of 
stretching of the rate-of-strain tensor D. Since the director transport equation is hyperbolic, no 
boundary condition orientation is specified at the outlet. The solution for the flow and orientation 
tensor is computed on a 5 x 5 mesh of square elements with biquadratic velocity, bilinear pressure and 
postprocessed bilinear director fields on each element. The system is integrated with time step Ar = 1 
until the respective fields have essentially reached steady state at t = 11 1. The initial and final 
orientation fields are shown in Figures 1 (a) and 1 (b) and the velocity and pressure fields in Figure 1 (c) 
and l(d) respectively. The maximum nodal error in the director field compared with the exact solution 
in (46) is 5 x lop4. This occurs on the centreline y = 1 where the velocity gradient vanishes. (Since 
the velocity gradient vanishes on the centreline, the director can take any orientation on the centreline. 
That is, since the director elasticity has been neglected in the L-E model, the equilibrium orientation of 
the director at the centreline is not uniquely defined and can take any direction.) 

The previous parallel plate flow problem is now considered with an applied electric field. The 
potential on the lower plate is unity and that on the symmetry plane is zero. The electrostatic potential 
equation is solved and the electric field computed at the Gauss points of each element. This is then 
used in the element calculations for the Jacobian matrix of the suspension flow equations. In the 
present work we assume that there are no orientation-dependent electrical properties within the fluid. 
The flow is driven by pressure drop, where the same normal stress (7,) drop across the domain is 
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0 - - . . . . - 
- I . .  . . . 0  . . . .I 

. / . 0 

Y -. . . . 0 .  I .  0 .  .. 
. 0 . . - 

-I . . . . . . . . . .. 
/ . . . 

n 
- I .  / . .  . r 0 . .  .. 

/ . / . 

Figure 1 .  GI = 0, p 2  = 0.1, p 3  = -0.05. I I  = 1.5:  (a) initial director orientation; (b) director orientation at f = 11 I ;  (c) 
velocity profile at t = 1 1 1 with a maximum of 1 .O; (d) pressure values >-a, -0.3; b, -0.7; c, - 1.1; d - 1 . 5 ;  e, - 1.9 

specified as in the previous study. The initial orientation of the director is taken to be vertical 
throughout the suspension, including at the inlet. The applied electric field produces a local dipole 
effect that acts to orient and anchor the director, so we set 1, = 1 as explained in the discussion of the 
electric stress in Appendix I. In the present calculation we also set 1, = 10, which implies that the 
electric field effect will dominate the orientation pattern behaviour. That is, the electrical contribution 
to the director orientation is 10 times stronger than that due to the velocity gradient. Finally, we set 
A3 = 0, so that there is no permanent dipole in the director, and y, = 0.2, which implies that the 
electric field contribution to the stress tensor is approximately the same size as that due to the 
Newtonian viscosity. As expected, the electric field is essentially constant across the domain in this 
example. The evolved steady solutions for the orientation field and pressure distribution are shown in 
Figures 2(a) and 2(b) respectively and can be compared with the previous results in Figure 1. The 
effect of the applied field is to orient the director in the vertical direction as shown. However, in the 
vicinity of the bottom wall the velocity gradient is stronger and the orientation field still deviates 
slightly from the vertical. As expected, there is an increase in the effective viscosity due to the vertical 
orientation (Reference 16, p. 145) which makes the maximum velocity drop from 1.0 in Figure l(c) to 
0.883045. The velocity profile is essentially unchanged by the director re-orientation due to the applied 
electric field in this example. 

Remarks. If elastic terms are included, the solutions are very different from those obtained with the 
high-viscosity approximati~n.”~’~ For instance, in the parallel plate flow problem leading to (46), the 



ANISOTROPIC FLUID SUSPENSIONS 
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Figure 2. GI = 0, q2 = 0. I ,  q3 = -0.05, I1 = I .O, A2 = 10. 2 3  = 0, yI = 0.2: (a) director orientation at t = 193; (b) pressure 
values ;: a =  -0.3; b=-0 .7 ;  c =  - 1 . 1 ;  d =  -1.5; e =  -1.9 

director angle will no longer be a constant when elastic effects are included. In fact, for the parallel 
plate case the velocity and particle orientation are functions of y alone and the problem simplifies 
accordingly.” Other studies for I1 < 1 (where the director n ‘tumbles’) and with the elastic terms 
included have also been reported. 19*20 

Case 2. Channel with bump constriction 

Next we consider the same class of channel flows with specified fully developed inlet and outlet 
velocity profiles, but in the presence of a smooth ‘bump’ constriction in the centre region. The 
symmetric lower half of the flow domain with its finite element mesh is shown in Figure 3. The first 
calculation was made in the absence of any electric field and for I, = 5.0. The velocity and pressure 
fields at steady state are shown in Figure 4. The normal stress drops from 0 to -27 across the domain. 
A sequence of director patterns at t = 0.0, 0 .2 ,  0 . 7  and essentially steady state ( t  = 48) is shown in 
Figure 5 .  To validate the computations, a finer 5 x 40 mesh was also used and no visible difference 
was observed. Hence we use the 4 x 25 mesh in the remainder of the study. The time step for these 
calculations was At = 3 x lop5 s owing to the sensitivity of the orientation calculation. Note that the 
computed orientation field is not symmetric. In particular, following the bump constriction, the flow 
undergoes an extensional motion during the expansion region and the associated velocity gradient is 
such that the director tries to align with the vertical axis. This effect is evident in the figure. Also note 
that along the horizontal symmetry centreline the director orientation slope declines to zero as the 
bump is approached and then the director slope increases abruptly to a vertical orientation as the flow 
expansion region is encountered. The maximum velocity of 1.849 occurs at the centre of the 
constriction. Next the problem was recomputed with I, = 1.5. Although the velocity and pressure 
fields are essentially unchanged, there are some significant changes in the director field as shown in 
Figure 6. Since I ,  is smaller, the ‘anchoring’ effect of the velocity gradients is diminished. Hence the 
director slope does not decrease as rapidly along the centrelines as in the case with I, = 5.0. 
Downstream on the centreline, the director has a tendency to align normal to the flow as in the previous 
case. However, the stretching effect due to the expansion is not sufficient to ‘anchor’ the orientation 
and the director field can deviate through either a clockwise or counterclockwise rotation as seen at 
various times in Figure 7. 

Apparently there are two possible orientation solutions corresponding to positive or negative slopes 
respectively. The initial configuration and contraction flow favour the positive slope orientation, but 



22 

0 

G. F. CAREY, T. D. HU AND R.  MCLAY 

- 4 . 0  -2.0 0.0 2.0 4 . 0  

Figure 3. Mesh for parallel plates with constriction 

0 

-4.0 -2.0 0.0 2.0 4.0 
0 

4 - a c I m - (b) 
b 

0- 

0 I I I 
- 4 . 0  - 2 . 0  0 . 0  2 . 0  4 . 0  

Figure 4. GI = 0, p2 = 0. I .  p3 = -0.05, 1.1 = 5.0:  (a) velocity field at r = 48 with a maximum of 1.85; (b) pressure values 
> :  a=-l.5;b=-3.5;~=-5.5;d=-7.5; g = - 1 3 . 5 ; j = - 1 9 . 5 ; k = - 2 1 . 5  - 2 3 . 5 . m = - 2 5 . 5  
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Figure 5. GI = 0, p2 = 0.1, p 3  = -0.05, I I  = 5.0: (a) initial director orientation; (b) director orientation at r = 0.2; (c) at 
r = 0.7; (d) at r = 48 

along the centreline after the constriction the extensional stretching is such that either orientation may 
appear and the director orientation field can oscillate. This in turn will induce very small oscillations in 
the velocity and pressure fields. 

Next we considered the sensitivity of the orientation field solution to different choices of viscosity 
coefficients (p2 ,  p 3 )  = (1, -0.5), (2, -0.5) and (1, -1) at A, = 5.0, i.e. p2 + p3 = 0.5, 1.5 and 0. 
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Figure 6. GI = 0. p2 = 0.1, p3 = -0.05, LI = I . 5 :  (a) initial director orientation; (b) director orientation at I = 0.26; (c) at 
r = 0.69; (d) at I = 1.45; (e) at f = 2.67; (f) at I = 6.19 
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Figure 7. GI = 0, p2 = 0.1, p, = -0.05, 2.1 = 1.5:  (a) director orientation at r = 9.82; (b) at f = 1 I .92; (c) at r = 14.34 



24 G .  F. CAREY, T. D. HU AND R. McLAY 

0 

rl - 1 m k - (4 
0- 

0 I I I 
-4.0 - 2 . 0  0.0 2 . 0  4 . 0  

-4.0 - 2 . 0  0 .o 2 . 0  4 . 0  

Figure8. GI = O , p ! ,  = l , p 3  = -0.5,I.l =5,O:(a)pressurevalues ; : a = - 1 . 5 ; b = ~ 3 . 5 ; ~ = - 5 . 5 ; d = - 7 . 5 ; g = - I 3 . 5 ;  
j = - 1 9 . 5 ;  k = - 2 1 . 5 ; l = ~ 2 3 . 5 ; m = ~ 2 5 . 5 - a t t -  1.23; (b)directororientationatf= 1.23 
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F i W e 9 .  GI = 0 , p 2  = 2 , p 3  = -0.5.11 =S.O:(a)pressurevalues ;:a=-1.5;b=-3.5;~=-5.5;d=-7.5;g=-13.5; 
j = - 19.5; k - -21.5; 1 = -23.5; m = -25.5-at t = I .04; (b) director orientation at f = I .04 
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Figure 10. GI = 0, p? = 0.1, p3 = -0.05, = 1 .O, 2.2 = 10, I 3  = 0, y I  = 0.2: (a) electric potentials: a, 0.17; c, 0.5; e, 0.83; 
(b)pressurevalues 1 :  a = - l . 5 ;  b=-3.5;~=-5.5;d=-7.5;g=-I3.5;j=-19.5; k = - 2 1 . 5 ;  1=-23 .5 ;rn=-25 .5  

The results for the first two sets of values are shown in Figures 8 and 9. The maximum velocities for 
the two cases are 2.477 and 1.883 respectively. The global velocity fields are not significantly different 
and are not shown. However, the pressure field has some noticeable variations from the previous cases 
as seen in the figures. We remark that previous attempts by others to compute a converged solution to 
the second set were unsuccessful.” The final set (1, -1) did not yield a convergent solution. Baleo et 
~ 7 1 . ~  were also unsuccessful in obtaining convergence for this case. 

Finally we consider the same contraction-expansion flow in the presence of an applied electric field 
between the plates. The potential solution is shown in Figure 10(a). The velocity fields for suspension 
flow in all the cases considered were very close to the solution in the absence of the applied field and 
therefore will not be shown. There are some mild changes apparent in the pressure field in Figure 10(b) 
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Figure 1 I .  GI = 0, p2 = 0.1, p3 = -0.05, i., = 1 .O ,  i2 = 10, j.3 = 0, y ,  = 0.2: (a) initial director orientation; (b) director 
orientation at r = 145 

and of course the director field is again significantly influenced as seen in the results of Figure 11  at 
t = 145 s (essentially steady state) for computation with time step At = 0.1. 
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APPENDIX I: ELECTRIC STRESS FROM VARIATIONAL PRINCIPLE 

The electrical contribution to the stress tensor can also be obtained from a variational procedure. This 
approach reveals what choices of model coefficients are acceptable. From (7) the potential energy per 
unit volume for a dipole oriented in the direction of the anisotropic axis n can be determined by 
integrating the torque through the angle from E to n to yield 

(47) 
c 

U = -crn*(E-n) - 2 - Aa(E.n)2. 

The potential energy change ACJ and the electric stress 9 are related by 
A u  = & . . ~ e .  

' J  IJ' 

where is a virtual deformation field in the sense that a vector r embedded in the continuum changes 
to (I + E)*r  after the deformation. When cij is small, the potential energy change can be approximated 
bY 

where 

Now 

au 
an ' 

AU = 6n- - 

6n = e-n. 

(49) 

(50) 

= -c[m* + Aa(E-n)](E*I,,, = ,> 
= -rn[(I-nn).E], 
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where we have used an/an = I - nn = I,,, = , . From (49) and (5 1) we see that 

AU = (E-n).m[(E-n)n - El = .z,,m[(E.n)n, - E,]n,. (52) 

Comparing (52) with (48), 

T; = m[(E-n)n, n, - E, E,] (53) 

or 

T‘ = ,12yl[(E-n)2nn - EE-nn] + A3y,[(E-n)nn - En]. (54) 

Finally, comparing (54) with (14), we find that a3 = 0. When there is no electric field, one usually 
chooses u3 to be a small negative number to ensure director anchoring instead of director tumbling.2721 
In the presence of an electric field the anchoring is enhanced by the electric field. When a3 = 0, we see 
that I ,  = 1, p4 = m, p5 = -m, p6  = 0 and (1 5) becomes 

T =2pD + [GI + p2(n.D-n)]nn + 2p3[n(D-n) + (D-n)n] 
( 5 5 )  + 1 2 y I  [(E-n)2nn - EE-nn] + A3yl [(E-n)nn - En], 

which is the form stated in (19). 

APPENDIX 11: ANALYTICAL SOLUTION FOR FLOW BETWEEN PARALLEL PLATES 

In a two-dimensional, filly developed flow between parallel plates we assume that the velocity 
components u = (u, v, w) can be written as2 

u =go.’), v = w = o  (56) 

and we assume that the director angle /3 is constant with 

n = (nx,  n,) = (cos p, sin p). (57) 

In the absence of the electric field, equation (13) can be reduced to 

- - I  an* ’ at - ?g sin j ( 1  + I ,  - 2 ~ ,  cos2 8) = tg’ sin p[1 - I ,  c o s ( 2 ~ ) ] ,  

an, - 1 I at - ?g cos B(-1 + I ,  - 21, sin2 p) = -tg’ cos fi[1 - I, cos(2fi)l. 

We see that if Irl,l < 1, there is no steady state solution (since I cos(2fi)I 5 1). When A, 2 1, the steady 
state solution gives I, cos(2p) = 1 or 

(58 )  

which is equation (46). 
Finally, the equation of motion and boundary conditions are satisfied by 
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where Ap/ l  is the pressure drop per unit length, po is an arbitrary constant and h is the distance 
between the wall and the line of symmetry (h = 1 in our study). 
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